Dissociation of calmodulin from cardiac ryanodine receptor causes aberrant Ca(2+) release in heart failure.
نویسندگان
چکیده
AIMS Calmodulin (CaM) is well known to modulate the channel function of the cardiac ryanodine receptor (RyR2). However, the possible role of CaM on the aberrant Ca(2+) release in diseased hearts remains unclear. In this study, we investigated the state of RyR2-bound CaM and channel dysfunctions in pacing-induced failing hearts. METHODS AND RESULTS The characteristics of CaM binding to RyR2 and the role of CaM on the aberrant Ca(2+) release were assessed in normal and failing canine hearts. The affinity of CaM binding to RyR2 was lower in failing sarcoplasmic reticulum (SR) than in normal SR. Addition of FK506, which dissociates FKBP12.6 from RyR2, to normal SR reduced the CaM-binding affinity. Dantrolene restored a normal level of the CaM-binding affinity in either FK506-treated (normal) SR or failing SR, suggesting that the defective inter-domain interaction between the N-terminal domain and the central domain of RyR2 (the therapeutic target of dantrolene) is involved in the reduction of the CaM-binding affinity in failing hearts. In saponin-permeabilized cardiomyocytes, the frequency of spontaneous Ca(2+) sparks was much more increased in failing cardiomyocytes than in normal cardiomyocytes, whereas the addition of a high concentration of CaM attenuated the aberrant increase of Ca(2+) sparks. CONCLUSION The defective inter-domain interaction between N-terminal and central domains within RyR2 reduces the binding affinity of CaM to RyR2, thereby causing the spontaneous Ca(2+) release events in failing hearts. Correction of the defective CaM binding may be a new strategy to protect against the aberrant Ca(2+) release in heart failure.
منابع مشابه
Enhanced binding of calmodulin to the ryanodine receptor corrects contractile dysfunction in failing hearts.
AIMS The channel function of the cardiac ryanodine receptor (RyR2) is modulated by calmodulin (CaM). However, the involvement of CaM in aberrant Ca(2+) release in diseased hearts remains unclear. Here, we investigated the pathogenic role of defective CaM binding to the RyR2 in the channel dysfunction associated with heart failure. METHODS AND RESULTS The involvement of CaM in aberrant Ca(2+) ...
متن کاملPhosphorylation of the cardiac ryanodine receptor by Ca2+/calmodulin-dependent protein kinase II: the dominating twin of protein kinase A?
Excitation–contraction coupling in the heart relies on Ca -induced Ca release from the sarcoplasmic reticulum (SR). Ca influx via L-type Ca channels during an action potential triggers Ca release from the SR via Ca release channels, or ryanodine receptors (RyR2). Fine tuning of RyR2-mediated SR Ca release is central to cardiac function. When RyR2-mediated Ca release increases, the resulting aug...
متن کاملRyanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure.
BACKGROUND approximately half of patients with heart failure die suddenly as a result of ventricular arrhythmias. Although abnormal Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors (RyR2) has been linked to arrhythmogenesis, the molecular mechanisms triggering release of arrhythmogenic Ca(2+) remain unknown. We tested the hypothesis that increased RyR2 phosphorylation ...
متن کاملMuscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II.
Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac ...
متن کاملCa2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure.
Abnormal release of Ca from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction and arrhythmogenesis in heart failure (HF). We previously demonstrated decreased Ca transient amplitude and SR Ca load associated with increased Na/Ca exchanger expression and enhanced diastolic SR Ca leak in an arrhythmogenic rabbit model of nonischemic HF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 87 4 شماره
صفحات -
تاریخ انتشار 2010